17,354 research outputs found

    Space station stabilization and control study Final engineering report

    Get PDF
    Simulation of stabilization and control for spinning, manned space station to provide artificial gravity station environmen

    Particle Flow Calorimetry at the ILC

    Get PDF
    One of the most important requirements for a detector at the ILC is good jet energy resolution. It is widely believed that the particle flow approach to calorimetry is the key to achieving the goal of 0.3/sqrt(E[GeV]). This paper describes the current performance of the PandoraPFA particle flow algorithm. For 45 GeV jets in the Tesla TDR detector concept, the ILC jet energy resolution goal is reached. At higher energies the jet energy resolution becomes worse and can be described by the empirical expression: sigma_E/E ~ 0.265/sqrt(E[GeV]) + 1.2x10^{-4}E[GeV].Comment: 5 pages, 2 .eps figures, to appear in Proc. LCWS06, Bangalore, March 200

    Mode-selective toroidal mirrors for unstable resonator planar waveguide and thin slab solid-state lasers

    Get PDF

    THE CHARACTERIZATION OF GROUND ICE DEPOSITS USING GROUND-PENETRATING RADAR TECHNIQUES

    Get PDF
    This study explores the capabilities of ground-penetrating radar (GPR) in the task of characterizing ground ice and the role this instrument can play in understanding the geomorphology of the cryosphere. The first article investigates the dielectric permittivity of ground ice using on-ice common-midpoint (CMP) GPR surveys conducted over massive stratified segregation ice, non-stratified segregation ice, and polygon ice wedges located on Ellesmere and Devon Islands, Nunavut. In comparison with ice cores, it was found that the dielectric permittivity of ground ice is most influenced by the volumetric ice content. This relationship appears to follow a modified complex refractive index (CRIM) dielectric mixing model. The second study applies the Brewster angle of incidence method to determine the dielectric permittivity of ground ice using endfire CMP surveys conducted atop the active layer. This method was able to predict dielectric permittivities within one dielectric unit of those established in the first article

    Characterizing Human Mobility Patterns in a Large Street Network

    Full text link
    Previous studies demonstrated empirically that human mobility exhibits Levy flight behaviour. However, our knowledge of the mechanisms governing this Levy flight behaviour remains limited. Here we analyze over 72 000 people's moving trajectories, obtained from 50 taxicabs during a six-month period in a large street network, and illustrate that the human mobility pattern, or the Levy flight behaviour, is mainly attributed to the underlying street network. In other words, the goal-directed nature of human movement has little effect on the overall traffic distribution. We further simulate the mobility of a large number of random walkers, and find that (1) the simulated random walkers can reproduce the same human mobility pattern, and (2) the simulated mobility rate of the random walkers correlates pretty well (an R square up to 0.87) with the observed human mobility rate.Comment: 13 figures, 17 page

    Feedback methods for inverse simulation of dynamic models for engineering systems applications

    Get PDF
    Inverse simulation is a form of inverse modelling in which computer simulation methods are used to find the time histories of input variables that, for a given model, match a set of required output responses. Conventional inverse simulation methods for dynamic models are computationally intensive and can present difficulties for high-speed applications. This paper includes a review of established methods of inverse simulation,giving some emphasis to iterative techniques that were first developed for aeronautical applications. It goes on to discuss the application of a different approach which is based on feedback principles. This feedback method is suitable for a wide range of linear and nonlinear dynamic models and involves two distinct stages. The first stage involves design of a feedback loop around the given simulation model and, in the second stage, that closed-loop system is used for inversion of the model. Issues of robustness within closed-loop systems used in inverse simulation are not significant as there are no plant uncertainties or external disturbances. Thus the process is simpler than that required for the development of a control system of equivalent complexity. Engineering applications of this feedback approach to inverse simulation are described through case studies that put particular emphasis on nonlinear and multi-input multi-output models

    Energy Loss from Reconnection with a Vortex Mesh

    Full text link
    Experiments in superfluid 4He show that at low temperatures, energy dissipation from moving vortices is many orders of magnitude larger than expected from mutual friction. Here we investigate other mechanisms for energy loss by a computational study of a vortex that moves through and reconnects with a mesh of small vortices pinned to the container wall. We find that such reconnections enhance energy loss from the moving vortex by a factor of up to 100 beyond that with no mesh. The enhancement occurs through two different mechanisms, both involving the Kelvin oscillations generated along the vortex by the reconnections. At relatively high temperatures the Kelvin waves increase the vortex motion, leading to more energy loss through mutual friction. As the temperature decreases, the vortex oscillations generate additional reconnection events between the moving vortex and the wall, which decrease the energy of the moving vortex by transfering portions of its length to the pinned mesh on the wall.Comment: 9 pages, 10 figure
    corecore